Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We discuss quantum position verification (QPV) protocols in which the verifiers create and send single-qubit states to the prover. QPV protocols using single-qubit states are known to be insecure against adversaries that share a small number of entangled qubits. We introduce QPV protocols that are practically secure: they only require single-qubit states from each of the verifiers, yet their security is broken if the adversaries sharing an impractically large number of entangled qubits employ teleportation-based attacks. These protocols are a modification of known QPV protocols in which we include a classical random oracle without altering the amount of quantum resources needed by the verifiers. We present a cheating strategy that requires a number of entangled qubits shared among the adversaries that grows exponentially with the size of the classical input of the random oracle.more » « less
-
null (Ed.)Abstract Damaged or mismatched DNA bases result in the formation of physical defects in double-stranded DNA. In vivo, defects in DNA must be rapidly and efficiently repaired to maintain cellular function and integrity. Defects can also alter the mechanical response of DNA to bending and twisting constraints, both of which are important in defining the mechanics of DNA supercoiling. Here, we use coarse-grained molecular dynamics (MD) simulation and supporting statistical-mechanical theory to study the effect of mismatched base pairs on DNA supercoiling. Our simulations show that plectoneme pinning at the mismatch site is deterministic under conditions of relatively high force (>2 pN) and high salt concentration (>0.5 M NaCl). Under physiologically relevant conditions of lower force (0.3 pN) and lower salt concentration (0.2 M NaCl), we find that plectoneme pinning becomes probabilistic and the pinning probability increases with the mismatch size. These findings are in line with experimental observations. The simulation framework, validated with experimental results and supported by the theoretical predictions, provides a way to study the effect of defects on DNA supercoiling and the dynamics of supercoiling in molecular detail.more » « less
-
Abstract Fire retardant coatings have been proven effective at reducing the heat release rate (HRR) of structural materials during burning; yet effective methods for increasing the ignition temperature and delay time prior to burning are rarely reported. Herein, a strong, fire‐resistant wood structural material is developed by combining a densification treatment with an anisotropic thermally conductive flame‐retardant coating of hexagonal boron nitride (h‐BN) nanosheets to produce BN‐densified wood. The thermal management properties created by the BN coating provide fast, in‐plane thermal diffusion, slowing the conduction of heat through the densified wood, which improves the material's ignition properties. Compared with densified wood without the BN coating, a 41 °C enhancement in ignition temperature (Tig), a twofold increase in ignition delay time (tig), and a 25% decrease in the maximum HRR of BN‐densified wood can be achieved. As a proof of concept for scalability, the pieces of the BN‐densified wood are fabricated with a length larger than 25 cm, width greater than 15 cm, and thickness more than 7 mm. The improved thermal management, fire resistance, mechanical strength, and scalable production of BN‐densified wood position it as a promising structural material for safe and energy‐efficient buildings.more » « less
An official website of the United States government
